(e P

DECISION MAKING AND
BRANCHING |

i
~—

Deus"o"‘making statements | switch statement | Conditional operator | goto statement | Infinite, foey,
B e T ‘\\\
5.1 'NTRODUCTION o~]
B L
eqUentiany in
N calculatipn,

We have seen that a C program is a set of statements which are normally executed s
the order in which they appear. This happens when no options or no repetitions of certai
wever, in practice, we have a number of situations where we may have to Chang.:.
based on certain conditions, or repeat a group of statements unty
es a kind of decision making to see whether a Particys,

are necessary. Ho
tion of statements

the order of execu
certain specified conditions are met, This involv
or not and then direct the computer to execute certain statements aCCOI’ding!y_

condition has occurred
C language possesses such decision-making capabilities by supporting the following statemens;

1. if statement
2. switch statement
3. Conditional operator statement

-making statements. Since these statements

4. goto statement
These statements are popularly known as decision
ntrol statements.

‘control’ the flow of execution, they are also known as co
ments in the earlier examples. Here, we shall discuss their

We have already used some of these state
features, capabilities and applications in more detail.

9.2 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of executiop of
statements. It is basically a two-way decision statement and is used in conjunction with an expression.

It takes the following form S B
' . if(test expression)
expréssion first and then, depending on whether the value of

It aﬂows the computer to evaluafe the . i
the expression (relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to

Declislon Making and Branching

particular statement. This point of program has two paths
to follow, one for the true condition and the other for the
false condition as shown in Fig. 5.1,

Some examples of decision making, using if statements
are:

1. if (bank balance is zero) False
borrow money

2. if (room is dark)
put on lights

3. if (codeis 1)
person is male

4. If (ageis more than 55) Fig. 5.1 Two-way branching
person is retired

test eXpression
?

True

‘The if statement may be |mplemented in different forms depending on the complexity of conditions
to be tested. The different forms are:

1. Simple if statement
2. if.....else statement

3. Nested if....else statement
4. else if ladder.

We shall discuss each one of them in the next few section.

5.3 SIMPLE IF STATEMENT ==

The general form of a simple if statement is
if (test expression)

{

Entry

statement-block;
1

statement-x;

The ‘statement-block’ may be a single
statement or a group of statements. If the test
expression is true, the statement-block will be
executed; otherwise the statement-block will
be skipped and the execution will jump to the
statement-x. Remember, when the condition
is true both the statement-block and the statement - x }*
statement-x are executed in sequence. This is
illustrated in Fig. 5.2.

Consider the following segment of a \

program that is written for processing of marks [Next statement]
obtained in an entrance examination.)

test
expression

True

Y
statement-block [

Fig. 5.2 Flowchart of simple if control

Programmin it ANSTL G

if (category == SPORTS)

{
marks = marks + bonus_marks;
)
printf("sf", marks);
. . e student belongs to the SPORTS Categq

The program tests the type of category of the student. Ifth
then additional bonus_marks are added to his marks before

are not adde.

they are printed. For others, bonyg Mark.
- ks

I The program in Fig. 5.3 reads four values a, b, ¢, and d from the terming an
1l evaluates the ratio of (a+b) to (c—d) and prints the result, if c—d is not equ:l

to zero.

] Program .

The program given in Fig. 5.3 has been run for two sets of data to see that the paths function Propery

The result of the first run is printed as,
Ratio = -3.181818

- Program
main()

{

int a, b, c, d;
float ratios

pr‘intf("Entef‘ four integer values\n");
scanf("%d %d %d %d", &a, &b, &c, &d);

if (c-d !'= 0) /* Execute statement block */

{
ratio = (float) (a+b)/(float) (c-d);
printf("Ratio = %f\n", ratio);

}

HEhtéf,fﬁquinfegéf values
3y 2373445 .
~ Ratio.= -3.181818

" Enter: f'uur‘j integer val ues

Fig. 5.3 /llustration of simple if statement

AT

116 Programming in ANSI C

-0uthut
Enter weight and hetght for 10 boys
dh 176,45
hi 174.p
42 18,0
a9 170.7
H4a LOw.0
Ha 170.5
49 167.0
a8 175.0
arz 167
51 170
Number o boys with weight < 50 ky
and height » 170 em =3

Fig. 5.4 Use of if for counting

Applying De Morgan’s Rule

erator is applied to a compound logical expression, like I(x&&y||!z). However, a positive |

—_—

While designing decision statements, we often come across a situation where the logica NOT
ogic ig

op
always easy to read anq comprehend than a negative logic. In such cases, we may apply what js

known as De Morgan’s rule to make the tolal expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component,

while complemei.ting the relational operators"”

That is,
X becomes |x
Ix becomes x
&& becomes ||
|| becomes &&
Examples:

i(x && y || 1z) becomes Ix Iy && z
Ix<=0}| lcondition) becomes x >0&8& condition

5.4 THE IF.....ELSE STATEMENT

‘ The if...else statement is an extension of the simple if statement. The general form is

Oecigicn Mazing sl Bramchisg

If the test expression is true, then the trus-block statement(s), immediately foliowing the if sizlements
are executed; otherwise, the false-block statement(s) are executed. In eiher cas2, estner tmie-&bc?
or false-block will be executed, not both. This is illustrated in Fig. 5.5. in both the c2ses, e control S
transferred subsequently to the statemen-x.

Fa
|
% :
[] ot 5
v = ¥
[True-block
statement
|
i
L ~ statement-x
!
1
Y
Fig. 5.5 Flowchart of if......else conirol

Let us consider an example of counting the number of boys and girls in a class. We use code 1 fora
boy and 2 for a gifl. The program statement to do this may be written as follows:

.........

.........

TR o Meel

3

i
1

Programming in ANSI ©
g, the number of boys s i"Cre

i , i yo
The first test dotormines whother or not the student 'f: a ::33;/011({ test again determines Whethefse"
! and the program continues to the second tost, The boy. there is no need to teg;:"

by
, , . 1 ns a)
Student is a gid. This is unnecessary, Once a student is 'd‘.’!]“”(’ﬁnvo pragram segment can be p, Saip
aQirl. A student can be either o boy or a girl, not both. The abc b ifigg

for
Using the else clauso as follows:

.....

if (code == 1)

boy boy + 13
else

girl = girl + 13
XXXXXXXXXX

..........

qual to 1, the statement boy = boy + 1; is executed and the control is transfened
tatement

€ Contrgy

Here, if the code ise ;
to the statement Xxxxxx, after skipping the else part. If the code is not equal to 1, the s
boy =boy + 1; js Skipped and the statement in the else part girl = girl + 1; is executed before th
reaches the statement XXXXXXXX.

Consider the program given in Fig. 5.3. When the value (c—d) is zero, the ratio is not calculated anq
the program stops without any message. In such cases we may not know whether the program stoppeq
due to a zero value or some other error. This program can be improved by adding the else clause s

follows:

L N I RPN

if (c-d != 0)

{
ratio = (float)(a+b)/(float) (c-d);
printf("Ratio = %f\n", ratio);
]
else

printf("c-d is zero\n");

.........

; , f. Program53» , A program to evaluate the power series.

o x2 . x2 i X"
e=1+x+ o1 T3 n!'O<X<1
is given in Fig. 5.6. It uses if......else to test the acCuracy.

Tﬁe;bdﬁ‘/er»serie’s' contains the recurrence relationship of the type

Tr=atey (ﬁ-) forn > 1

finilnloni Makiry aidd Bratiohilfiyg

Vo= Atorn =1
~ 11"‘”"_ 1
IFT,,. (usually known as provious (o) is known, then 1, (kiomn ws prosont fommy Gafi b Gasity i
by multiplying the preavious terin by /n, Then ’
AR PR PR P A B R 1V (/]

Pragram
Fedefdpe ACOURACY (G GG]
madi()
{
it o, caunt g
float 7, ternm, sumg
printf0"Cater value of 20"
scanf ("%f”, &x);
n = term « sum » count = 13
: while (no== 100)
; ’
¢ term = term * x/ng
: sum = sum 4 Lerm;
court = count + 1
; it (term = ACCURACY)
;“ n = 999;
= eclge
nsn+1;
}
printf("Terms « %d Sum « %fin", count, sumj;
gl t Yo '
"~ Qutput ¢
s Enter value of x:0

Terms « 2 Sum = 1,060000
Enter value of x:0.1
Terms = 5 Sum = 1,105171
Enter value of 2:0.5
Terms = 7 Sum = 1,648720
Enter value of x:0.75
Terms = 8 Sum = 2,116997
Enter value of x:0.99
Terms = § Sum = Z2.631232
 Enter value of x:1.

. Terms = 9 Sum = 2.718279 .

Fig. 5.6 [lliustration of if...else statement

4

Bine s,

i
]
.

,."»«a-""""“""*—-‘-n

LIy o
ny

‘('{.‘. %

F‘f\vpmnuning in ANSI C

" The Brogram uses count to count the number of terms added. The program stops when the y
he tem is tess than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, 1,

of n is‘ set equal to 999 (@ number higher than 100) and therefore the while loop terminates. The
re printed outside the while loop.

lug ¢
© Valm:,

'Gsults

Ve

‘* A

When a series of decisions are involved, we may have to use more than one if...else Statemem n
nested form as shown below:

3.5 NESTING OF IF....ELSE STATEMENTS 2

The logic of execution is illustrated in Fig. 5.7. If the condition-1 is false, the statement-3

- ' Will he
executed; otherwise it continues to perform the second test. If the condition-2 is true,

if (test condition-1)
If (test condition-2);

{ statement -1; —

}

else

statement -2; —

else
—

statement -3;

} .

statement -x; A

the statement-1 will be evaluated; otherwise the statement-2 will be evaluated and then the control js
transferred to the statemet-x.

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The

policy is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one,

irrespective of their balance, and 5 per cent is given to female account holders if their balance is more
than Rs. 5000. This logic can be coded as follows:

.........

if (sex is female)

{
if (balance > 5000)
bonus = 0.05 * balance;
else
bonus = 0.02 * balance:;
}
else
{
bonus = 0.02 * balance;
}

balance = balance -+ bonus;

Loatalon Malidng arid Bronghiing

Enlry

Falso P toet : True
- - condition 1 e
?

Falsy - tant o True
- condition 2 -
7

Lstatemonl-s k ’ t’:tﬁlc}ﬂfﬁnl& ' [slatormont-1 !
" d - Y

r——

|

R

l staloment - x g

|

[Neaxt Statermont k

Fig. 5.7 Flow chart of nested If...else statomonts

When nesting, care should be exercised to match every If with an else. Consider the following
alternative to the above program (which looks right at the first sight):

if (sex 1s female)
if (balance > 5000)
bonus = 0.05 * balance;
else
bonus = 0.02 * balance;
balance = balance + honus;
There is an ambiguity as to over which If the else belongs to. In C, an else is linked to the closest

non-terminated if. Therefore, the else is associated with the inner if and there is no else option for the
outer if. This means that the computer is trying to execute the statement

, balance = balance + bonus;
without really calculating the bonus for the male account holders.

Programming in ansi ¢

Cansider another alternative, which also looks correct:

if (sex is female)
{
if (balance > 5000)
bonus = 0.05 * halance;
}
else
bonus = 0.02 * balance;
balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male
gggoL{nt holders. However, bonus for the female account holders, whose balance is equal to or Jess than
0 is not calculated because of the missing else option for the inner if.

7 I The program in Fig. 5.8 selects and prints the largest of the three Numberg
using nested if....else statements.

Program

main()
{
float A, B, C;3
printf("Enter three values\n");
scanf("%f % %", &A, &B, &C);
printf("\nlLargest value is)3
if (A>B)
{
if (A=C)

printf("%f\n", A);
else

printf("%f\n", C);
}
else
{

if (C>B)

printf("sf\n", C);
else
printf("sf\n", B):
Sl ‘ L (o o

Enter three values
23445 67379 88843
Largest value is 88843.000000

Fig. 5.8 Selecting the largest of three numbers

Loclsion Making and Bronching

Ono of tho classic probloms encountered when we start using nested if....else statements iz the
dangling elso. This occurs when a matching else is not available for an If, The answer to this problem
is very simple. Always match an olse to the most recent unmatched if in the current block, In some

gaﬂﬂﬂ.nltt 5‘ possible that the false condition is not required, In such situations, elge statement may
e omitte

“elso is always paired with the most recent unpaired if’

5.6 THE ELSE IF LADDER

e 1
There is another way of putting Ifs together when multipath decisions are involved. A multipath decision

;s a chain of ifs in which the statement associated with each else is an if. It takes the following general
orm:

if (condition 1)

statement-1; - . LA A PPN, ¥ LR | Y
else if (condition 2)

statement-2; L e e et

else if (condition 3) |
statement-3; - —————— | [
else if (condition n) ! E

statement-n; ———
else

default-statement;~—— | , '
Rt H | i
statement-x; < - SEUSEUN—Suot WS IS RS, M NI

This construct is known as the else if ladder. The conditions are evaluated from the top (of the fadder),
downwards. As soon as a true condition is found, the statement associated with it is executed and the
control is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions
become false, then the final else containing the default-statement will be executed. Fig. 5.9 shows the
logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done
according to the following rules:

Average marks Grade

80 to 100 Honours

60to 79 First Division

50 to 59 - Second Division
40 to 49 Third Division

0to 39 : Fail

~ thatis both effective and efficient, it is
.. ofanif statement and the rules governing their nesting.

m FProgramming in ANSI C

ws!:
This grading can be done using the else If ladder as follo

if (marks > 79)
grade = "Honours";
else if (marks > 59)

grade = “First Division";
else if (marks > 49)
grade = "Second Division";

else if (marks > 39)
grade = "Third Division";
else
grade = “Fail";
printf (“%s\n”, grade);
Consider another example given below:

if (code == 3)
colour = “Rgp";
else if (code == 2)
colour = "GREEN";
else if (code == 3)
colour = "WHITE";
else

colour = "YELLOW";

—— —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results
can be obtained by using nested if...else statements.

if (code != 1)
if (code 1= 2)
if (code != 3)
colour = “YELLOW";

else
colour = "WHITEY;
else
colour = "“GREEN";

else
; colour = "RED";
‘In such situations, the choice is Ieft to the programmer. However, in order to choose an l.f structure
important that the programmer is fully aware of the various forms

Doclislon Making and Branching

Entry

2

T T aE N
~M2_~Condition-1>-False
y iy, '

True

Condition-2 Fale

/
True 4

ondition-3 >-------

4
statement-3 |

y
statement-n

default
statement

.

statement - x

h\ext stateme?t[

Fig. 5.9 Flow chart of else..if ladder

\
|
\
i
An electric power distribution company charges its domestic consumers as |
follows:

I _ Program 5.5

Consumption Units Rate of Charge

0 -200 Rs. 0.50 per unit

201 — 400 Rs. 100 plus Rs. 0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs. 0.80 per unit excess of 400
601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 5.10 reads the customer number and power consumed and prints the amount
to be paid by the customer.

 Program
‘ main()
{
int units, custnum;
float charges;
- printf(*Enter CUSTOMER MNO. and UNITS consumed\n®):

Programming in ANSI C

scanf ("4d sd", &cusltnum, &units);
tE (units <= 200)
charges . 0.5 * units:
else if (units <= 400)
charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);
else
charges = 390 + (units - 600);
Printf("\n\nCustomer No: %d: Charges = %.2f\n",
Ccustnum, charges);

(-

Output

Enter CUSTOMER NO. and UNITS consumed 101 150
Customer No:101 Charges = 75.00
Enter CUSTOMER NO. ang UNITS consumed 202 225
Customer No:202 Charges = 116.25
Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75
Enter CUSTOMER No. and UNITS consumed 404 520
Customer No:404 Charges = 326.00
Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 5.10 liustration of else..if ladder

——

When ysing control structures, a statement often controls many other statements that follow it. In
such situations it is a good practice to use indentation to show that the indented statements are
dependent on the preceding controlling statement. Some guidelines that could be followed while
using indentation are listed below:

e Indent statements that are dependent on the previous statements; provide at least three spaces

of indentation. ‘

Align vertically else clause with their matching if clause.
Use braces on separate lines to identify a block of statements.
Indent the statements in the block by at least three spaces to the right of the braces.
Align the opening and closing braces.
Use appropriate comments to signify the beginning and end of blocks.
Indent the nested statements as per the above rules.
Code‘only one clause or statement on each line.

soision Making end Branching

5.7 THE SWITCH STATEMENT -

Wt
—_—
i

\We have seen that when one of the many altematives is to be selected, we can use an if statement
to control the selection. However, the complexity of such a program increases dramatically “‘m_?ﬂ the
wmenbder of altematives increases. The program becomes difficult to read and follow. At imes, 4 may
confuse even the person who designed it. Fortunately, C has a built-in multiway decision s:a:em-en!
Anown as a switch. The switch statement tests the value of a given variable (or expression) against
a list of case values and when a match is found, a block of statements associated with that case s
executed. The genera! form of the switch statement is as shown below:

case value-2
&1 OCK Pa
break;
default:
default-block
break:
statement-x

The expression is an integer expression or characters. Vaiue-1, value-2 ... are constants or constant
expressions (evaluable to an integral constant) and are known as case Jabels. Each of these values
should be unique within a switch statement. block-1, block-2 are statement lists and may contain
zero orf more statements. There is no need to put braces around these blocks. Note that case labels
end with a colon ().

When the switch is executed, the value of the expression is successfully compared against the

values value-1, value-2,.... I a case is found whose value matches with the value of the expression, then
the block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit
from the switch statement, transferring the contro! to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does
not match with any of the case values. If not present, no action takes place if all matches fail and the
control goes to the statement-x. (ANSI C permits the use of as many as 257 case labels).

The selection process of switch statement is illustrated in the flow chart shown in Fig. 5.11.

Programming in ANS! €

The switch s

illustrated below:

Sk

Imnuy
“awiltcly
OXNression
[e [" |Exprassion = vatue:t, [ookt |
L S st ¥
.. Exprossion = valuo-2 ("0 S

'@

e (N0 malch) default default S
-0 Malch) d ok

. S

I statement-x ,

Y

Fig. 5.11 Seloction process of the switch statement

tatement can be useqd to grade the students as discussed in the last section, Thig i,

index = marks/10
switch (index)

{

case 10:

case 9:

case §8:
grade = "Honours";
break;

case 7:

case 6:
grade = “First Division";
break;

case 5:
grade = "Second Division";
break;

case 4:
grade = "Third Division";

~ break;

default;

e grade = "Fail";
break;

br{ntf("%s\n?, grade) ;

Decision Making and Branching
Noto that we have used o conversion statement

index = marks / 10;
whero, index is defined as an integer, Tt

10 variable index takes the following integer values.

Marks Index
100 10
90 - 99 9
80 -89 8
70-79 7
60 - 69 6
50 - 59 5
40 - 49 4

0 0

This segment of the

program illustrates two im
three cases will execut

portant features. First, it uses empty cases. The first
© the same statements

grade = “Honours”;

break;
Same is the case with cas

, @ 7 and case 6. Second, default condition is used for all other cases where
marks is less than 40.

The switch statement is often used for menu selection. For example:

" o ——

printf (" TRAVEL GUIDE\n\n");
pPrintf (" A Air Timings\n")
printf(" T Train Timings\n");
printf(" B Bus Service\n");
printf(" X To skip\n");
printf(*“\n Enter your choice\n"):
character = getchar();

switch (character)

{
case 'A!
air-display();
break;
case 'B'
: bus-display();
T break;
case 'T'

train-display();
break;
default :
: printf(" No choice\n");

}

v o

e i " —

?§
: Programming in ANSI ¢
Itis possible to nost tho switch statements. That Is, a switch may be part of a case staterien, ANg,
C;nwnuba16|avcktnfnGHUng
Rules for switch statement | T~
* The switch oxpression must be an integral type.
« Case labels must ba constants or constant expressions.
« Casae labels must be unique. No two labels can have the same value.
» Case labels must end with colon.
* The break statement transfers the control out of the switch statement.
* The break statement is optional. That is, two or more case labels may belong to the Same
statements.
* The default label is optional. If present, it will be executed when the ex-pression does not fing
a matching case label,
* There can be at most one default label.
35 * The default may be placed anywhere but usually placed at the end.
i .f” * Itis permitted to nest switch statements.
{f 3 R
2 G? ¢ 1 i
2 4 it - P Write a complete C program that reads a value in the range of 1 to 12 5,
L f I . Program 5.6 I print the name of thgt rgonth and the next month. Print error for any Othe?-
o b input value.
o
{3\ Program
X

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()

{
char month[12][20] = {"January","February", "March" ,"April","May", “June!;

“July","August","September", "October", "November", "December"};

int i3

printf("Enter the month value: ");
scanf("%d",&1i);

IF(I=t>14=12) :
{ :
)y

printf("Incorrect value!!\nPress any key to terminate the program.
~getch(); .
exit(0); '

'1f(1' 12) ;
:ntf(“%s fo]]owed by /s",month[1 I] month[i]);

Dacislon Making and Branching

else

printt("ss followed by 5" \month|i-1] smonth[0]);

aetch(),
}
Qutput

Enter the month value: 6
June followed by July

Fig. §.12 Program to read and print name of months in the range of 1 and 12

5.8 THE ? : OPERATOR

T
(k-
The bC_3 lapguage has an unusual operator, useful for making two-way decisions. This operator is a
combination of ? and :, and takes three operands. This operator is popularly known as the conditional
operator. The general form of use of the conditional operator is as follows:
conditional expression ? expression1 : expression2
The conditional éxpression is evaluated
is returned as the value of the conditional
is returned. For example, the segment

if (x <0)
flag = 0;
else
flag = 1;

first. If the result is non-zero, expression? is evaluated and
expression. Otherwise, expression2 is evaluated and its value

can be written as
flag = (x <0) 20 :1

Consider the evaluation of the following function:

y=156x+3forx<2

y=2x+5forx>2
This can be evaluated using the conditional operator as follows:

y=(x>2)7(2*x+5): (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For

example, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the
number of products sold in a week, her weekly salary is given by

4x +100 for x < 40
Salary = 4300 for x =40
4.5x +150 for x <40
This complex equation can be written as
salary = (x I= 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

-

Declgion Making and Branching

Output

L. the Lwo numbers whose GCD e :
faie? Lo e LD 18 to be found: 18 17
- of 18 and 12 15 6

o !

Fig. 5 : - ;
9. 5.14 Program to determine GCD of two nurmbers

A R e G
o “A'<,:7'_'{‘

complex multiway selection statements require special attention. The readers should be able to

unt'ak‘f"'St.a_"'d the logic easily. Given below are some guidelines that would help improve readability
and facilitate maintenance.

« Avoid compound negative statements. Use positive statements wherever possible.

» Keep logical expressions simple. We can achieve this using nested if st i
: : atements, if necessary
(KISS - Keep It Simple and Short). 9

« Try to code the normal/anticipated condition first.

. Use the most probable condition first. This will eliminate unnecessary tests, thus improving the
efficiency of the program.

» The choice between the nested if and switch statements is a matter of individual's preference.
A good rule of thumb is to use the switch when alter-native paths are three to ten.

« Use proper indentations (See Rules for Indentation).

« Have the habit of using default clause in switch statements.

« Group the case labels that have similar actions.

——

59 THE GOTO STATEMENT it e

So far we have discussed ways of controlling the flow of execution based on certain specified conditions.
Like many other languages, C supports the goto statement to branch unconditionally from one point to
another in the program. Although it may not be essential to use the goto statement in a highly structured
language like C, there may be occasions when the use of goto might be desirable.

) vT_he goto requires a /abel in order to identify the place where the branch is to be made. A label is
any valid variable name, and must be followed by a colon. The label is placed immediately before the
statement where the control is to be transferred. The general forms of goto and /abel statements are

~ shown below:

goto label; label: —<—
- T O statement;
FOTRECRILE Sy Dt CURE | BRSPS
statement;
goto label;
For’Wafdjuhip ' e "B'arrckwardjump

ot @

~

Progrnmmlng in ANSI C

The label: can be anywhere in the program either before or after the goto label; statemen;.

During running of a program when a statement like
goto begin;
Is met, the flow of control will jump to the statement immediately following the label begin:. This happe,
unconditionally. s

Note that a goto breaks the normal sequential execution of the program. If the label: js beforg th
statement goto label; a loop will be formed and some statements will be executed repeated|y, Sug 0
jump is known as a backward jump. On the other hand, if the /abel: is placed after the goto labe, soma
statements will be skipped and the jump is known as a forward jump. 3

Agotois often used at the end of a program to direct the control to go to the input statement, to reaq
further data. Consider the following example:

main()
{
double x, y;
read:
scanf("%f", &x);
if (x < 0) goto read;
y = sqrt(x);
printf("%f %f\n", x, y);
goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terming)
The program uses two goto statements, one at the end, after printing the results to transfer the contro|

Due to the unconditional goto statement at the end, the control is always transferred back to the input
statement. In fact, this program puts the computer in a permanent loop known as an infinite loop. The
computer goes round and round until we take Some special steps to terminate the loop. Such infinite
loops should be avoided. Program 5.9 illustrates how such infinite loops can be eliminated.

: ? Program presented in Fig. 5.15 illustrates the use of the goto statement,
I Program 5.9 The program evaluates the square root for five numbers. The variable count
keeps the count of numbers read. When count is less than or equal to 5,

goto read; directs the control to the label read; otherwise, the program
prints a message and stops.

~ Program
#include <math.h>
main()
{
double x, y;
int count;
count. = 13
‘printf("Enter FIVE real values in a LINE \n");
read: S VR
séanf(“%?f",_&x)i

Decision Making and Branching &k
printf("\n"),
1T (x7<20)
printf("value - %d

is negative\n" .
Vse g \n",count);

(
\

y-= sqrt{x)s
printf("s)f\t 1f\n",

X, ¥);
}
count = count + 1;
if (count <= 5)
goto read;
printf("\nEnd of computation");
} 3

Qutput

Enter FIVE rea] values in a LINE
50.70 40 -36 75 11.25
50.750000

7.123903
40.000000 6.324555
Value -3 is negative
75.000000 8.660254
11.250000 3.354102

End. of computation

Fig. 5.15 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when
certain peculiar conditions are encountered. Example:

while (——--)
{

for (——-=-=)

{

if (-—--)goto end_of_program; “1

} Jumping
L= out of
—— 1oops
} -

end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to
enhance the readability of the program or to improve the execution speed.

DECISION MAKING AND
LOOPING

..._.....‘—----—....___.*________-______w‘ -

3 op | Control .
program loop statement | while statement | do statement | continue statement | break statement.

P

6.1 INTRODUCTION —
—— SL

we have seen in the previous chapter that it is Possible to execute a segment of a program repeatedly by
introducing a counter and later testing it using the if statement. While this method is quite satisfactory for
all practlcélI purposes, we need to initialize and increment a counter and test its value at an appropriate
place in the program fc_” the completion of the loop. For example, suppose we want to calculate the
sum of squares of all integers between 1 and 10, we can write a program using the if statement as
follows:

sum = 0Q;
n=1;
— loop:
L Sum = sum + n*n;
if (n == 10
0 goto print;
0 else
P n = 10,
n = ntl; end of Toop

—— goto loop;

This program does the following things:

1. Initializes the variable n.
2. Computes the square of n and adds it to sum.
3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program
prints the results.
‘4. If nis less than 10, then it is incremented by one and the control goes back to compute the sum
again. :

Bk

.} .
Bropramming in ANSE 0

The program evaluates the statement
sum = sum 4 ntng
10 h?mm. That ix, the 1Oop i axvcuted 10 Himea, Thia number can he Inareatsad or decronsgg oail
madifying tha relational exprasnion appropriately in the statomont If (n == 10). On such octnsjgn, W'): by
t?m(} oxact number of ropatitions are known lhém are more convanient maethods of looping |n Cr ,:""
looping capabilitios enable us to davelop v;)n(\i‘\u programs containing repotitive procosaes Withou e
Use of goto statemants. Pt : s
_ In tooping, o sequance of statoments are executod untll some conditiona for termination of th 1y
are salisfiod, A program loop thorefore conalata of two aegmants, one known as tha body of the Ton ;,0
the other known as the control statement. Tho control statomont tosta cortaln conditions and thon diregy
the repoated oxecution of the statements contained In tha body of the loop. .
. DQD“"“‘"Q on the position of the control statomeont In the loop, & control structure may be C'“Sﬂme
either as the entry-controllod loop or as tho exit-controlled 100p. The flow charts in Fig. 6.1 ”hm"md
these structures. In the ontry-controlled loop, the control conditions are tosted bofore the star of tho
loop execution. If the conditions are not satisfiad, then the body of the loop will not be Gxocuteq, |
the case of an exit-controlled loop, the test Is parformod at the end of tho body of the loop and "‘(’fﬁf'or
the body is executed unconditionally for the first time. Tho ontry-controlled and exit-controlled loops ar:

also known as pre-test and post-test loops raespectivoly.

Entry Entry
tost Body of
o~ condl"on .‘Fﬂige._. lhO IOOp
True)
‘ 7 (ast
- |
ggdlgg; condition : -False .

e

(a) Entry controlled loop (b) Exit controlled loop
Fig. 6.1 Loop control structures :

The test conditions should be carefully stated in. order to perform the desired number of loop

—éxecutions. It is assumed that the test condition will eventually transfer the control out of the loop. In

case, due to some reason it does not do so, the control sets up an infinite loop and the body is executed

over and over again.

A looping process, in"general, would include the following four steps:

1. Setting and initialization of a condition variable.
2. Execution of the statements in the loop.

Deocislon Making and Looping v

3. Test for a specified value of the condition variable for execution of the loop.
4. Incrementing or updating the condition variable. ‘

The test may be either to determine whether the loop has been repeated the specified number of
times or to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

‘sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for testing the control
expression, the loops may be classified into two general categories:

1. Counter-controlled loops
2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use a counter-
controlled loop. We use a control variable known as counter. The counter must be initialized, tested
and updated properly for the desired loop operations. The number of times we want to execute the

loop may be a constant or a variable that is assigned a value. A counter-controlled loop is sometimes
called definite repetition loop.

Ina sentinel'-contmlled loop, a special value called a sentinel value is used to change the loop
control expression from true to false. For example, when reading data we may indicate the “end of
data” by a special value, like —1 and 999. The control variable is called sentinel variable. A sentinel-

controlled loop is often called indefinite repetition loop because the number of repetitions is not
known before the loop begins executing.

J

6.2 THE WHILE STATEMENT .

p .
L

\i

The simplest of all the looping structures in C is the while statement. We have used while in many of
our earlier programs. The basic format of the while statement is

while (test condition)
{
bedy of the loop

}

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition is
true, then the body of the loop is executed. After execution of the body, the test-condition is once again
evaluated and if it is true, the body is executed once again. This process of repeated execution of the

" body continues until the test-condition finally becomes false and the control is transferred out of the loop.
On exit, the program continues with the statement immediately after the body of the loop.

The DOty Of the op may have one or more stitements. The brnces are noadod only if 1
CONTARR Do o nore statements, However, itis a good practice 1© use braces evon If the body K
Ve statoimennt, ‘

We can rewtite the program loop discussed In Section 6.1 aa follows:

o tmtly
% onjy

g voindtialization

- while(n - 10 * Testing *

23§ Vineremonting

The body of the loop is executed 10 times for n = 1, 2, 10, each time adding the square of th
value of n, which is incremented inside the loop. The test condition may also be written as n <11 lhe
result would be the same. This is a typical example of counter-controlled loops. The variable n is céll ;
counter or control variable. o

Another example of while statement, which uses the keyboard input is shown below:
character = ' ' 3
while (character != 'Y')
character = getchar();
XXXXXXX;

First the character is initialized to * ‘. The while statement then begins by testing whether character
is not equal to Y. Since the character was initialized to ' *, the test is true and the loop statement
] character = getchar();
is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed
until the letter Y is pressed. When Y is pressed, the condition becomes false because character equals
Y, and the loop terminates, thus transferring the control to the statement xxxxxxx;. This is a typical
example of sentinel-controlled loops. The character constant 'y’ is called sentinel value and the variable
character is the condition variable, which often referred to as the sentinel variable.

E A program to evaluate the equation

y=x"
when n is a non-negative integer, is given in Fig. 6.2

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop
control variable count is initialized outside the loop and incremented inside the loop. When the value of
‘count becomes greater than n, the control exists the loop.

Programming in ANST O |

L

LDiecision Making and Looping

ey as

ount++-. ; -
count /* Incrementing

/* END OF LogP */
Printf("\nx = %f; n = 5d; x to power n = %f\n",x,n,y);
}
Qutput
Enter the values of x and n : 2.5 4
X = 2.500000; n = 4; x to power n = 39.062500
Enter the values of x and n : 0.5 4
x = 0.500000; n = 4; x to power n = 0.062500
Fig. 6.2 Program to compute x to the power n using while loop
6.3 THE DO STATEMENT hee.
. S

The while loop construct that we have discussed in the previous section, makes a test of condition
before the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is
not satisfied at the very first attempt. On some occasions it might be necessary to execute the body of
the loop before the test is performed. Such situations can be handled with the help of the do statement.
This takes the form:

§ do
5 (
! body of the loop

3
f

while (test-condition);

~ On reaching the do statement, the program proceeds to evaluate the body of the loop first. At the end
of the loop, the test-condition in the while statement is evaluated. If the condition is true, the program

m Programming in ANSI C

continuos to ovaluato the body of tho loop once again, This process continues as long as the conditio
Ip truo. Whon tho condition becomos false, the loop will be terminated and the control goes tg thn
statoment that nppears Immadiately after the while statement. £

Sinco the test-condition 1s ovaluated at the bottom of the loop, the do...while construct providesg
axit-controlled loop and tharefore the body of the loop is always executed at least once, an
A simplo example of a do...while loop Is:

{ printf ("Input a number\n"); ;
loop number = getnum ()3 !

— while (number > 0); E

This segment of a program reads a number from the keyboard until a zero or a ne

7 keyed in, and assigned to the sentinel variable number. gative number
f-[{,f The test conditions may have compound relations as well. For instance, the statement
';_}', while (number > 0 2& number < 100);
'-3"',;': in the above example would cause the loop to be executed as long as the number keyed in lies betwee
1 0 and 100. n
. i Consider another example:
E“ﬁ-i\: I+l ‘ /* Initializing *
\-‘Lq_ sum = 0;
..'\\i do

IN e
Tea sum = sum + I;
loop 1 = 1+2; /* Incrementing */
i

Lo while(sum < 40 || I < 10);
printf("%d %d\n", I, sum);

/* Testing k)

The loop will be executed as long as one of the two relations is true.

ez A program to print the multiplication table from 1 x 1 to 12 x 10 as shown
| ~ Program 6.2 l below is given in Fig. 6.3.

1 2 3 4 10
2 4 6 8 . 20
3 6 9 12 v 5 comeonses 30
O L T 40

1)

. T 120

Ligcision Making and Looping 157

This program containg two do.... while loops in nosted fomm. The outer loop 15 contraiod by the

variable row and executed 12 times. Tha inner loup is controlled by the variable column and is ereouted
10 times, each time the outer loop s oxeculed, That is

, theinnar loop is erzectad o tetal of 121) tirnes,
each lime printing a value In the tabla,
Program:

fdefine (COLMAX 10
fdefine HOWMAY 17

main()
{

i

int row,column, y;

row =];
printfg" MULTIPLICATION TABLE W
PNt (e e A")
do /*...... OUTER LOOP BEGINS........ /
{
t
column = 1;
do /*....... INNER LOOP BEGINS....... #/
f
y'= row * column;
printf(“%44", v);
column = column + 1;
}
while (column <= COLMAX); /*...THHER LOOP ENDS...™/
printf("\n");
row = row + 1;
i |
while (row <= ROWMAX) 3 /% OUTER LOOP EHDS =]
o B 1 1 A (L N 0 D S e e SR L n*};
}
Qutput
MULTIPLICATION TABLE
1 2 3 4 5 3 7 8 9 10
2 4 6 8 10 12 i4 16 12 20
3 6 9 12 15 i8 21 24 27 30
4 8 12 16 20 24 28 3z 36 30
5 10 15 20 25 30 35 40 a5 50
6 12 18 24 30 36 42 48 54 &0
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 12 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 a0 90 100
1L 22 33 44 55 66 17 83 99 1190
12.% 24 36 48 60 72 84 95 108 120

— —— p— — — t— — — — o— —— — — — — — —— m— —— ——

f"vwﬁi.t‘d-@!n{en” i AdET Y

Mot thpl thias PIINY o W Bt Wis cdosied di0ef rosrrtends Bivy Fupie L (s iedae £r) TR B sy, Pis
Prirstte ol il rowy vivdass 1) oie Hne e ity priertt i Bl sndee b witiaties @ raeet Seey ey Srey %
e wl Fovew

G4 THE FOR STATEMENT
[imple far' Loops

The for loop in another entry-controllod loog thist (Hondes 8 trene corses vas ried ARy vay
aunetal form of the for loop is ‘

for (fuitiaolirof /i Cesticondition 3 il g - s 1

i § _
f{F The axecution of the for sistement is as follows:
B 1
a3

‘ Initialization of the control variablos is done first, using assignmerd slaternerts wurt; ;
3;‘ count = 0. Tho variables | and count are known as loop-comnteol yatizties.
3! 2. The valuo of tho control variable is tested using the test-condition. The test-conddion = 2 -z
: oxprossion, such as i < 10 that determines when the loop will ezt i the cordtion frie
of tho loop In exocuted; otherwise the loop is terminated and the erection corfres we T
statomaent that immadiately follows the loop.
3. When tho body of the loop is executed, the control is transferred bacr 1o e for ziztee
aftor evaluating the last statement in the loop. Now, the control varizble 1 fncremertes ;.-:'rr:;—»
assignment statement such as i = i+1 and the new value of the control varzsie = oz e
to soe whother it satisfies the loop condition. If the condition is satizfied, the Doy oFf e o :':
again oxecuted. This process continues till the value of the control varizbie f=ie 1D TEmety e
test-condition, C

Note €99 enhances the for loop by allowing declaration of varizbizs in

o
=

permils portion. See the Appendix “CG59 Features”™

Y
N
i

Consider the following segment of a program:

for {(x=0 ; x<=9 3 x = x+1)

Toop i
| printf("%d”, x);
|
— }
printf("\n");
This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections encicsed

within parentheses must be separated by semicolons. Note that there is no semicoion at the end of =
Increment section, x = x+1.

s 4

st

Dacision Making and {ooping

The for slatement allows for negative incromuents. For example, the loop discussed above can be

written as follows:
for (x = 0 ; x »= 0 X x=1)
printf("sd", x);
printf(“\n");
This lgnn "ﬁl also executed 10 times, but the outpul would Lo from 916 O instead of O to G, Note that
braces are optional when tho body of the loop contains only one statarment,
Since the conditional lest iy always performed at the beginning of the loup, the body of the laop may
not be executed at all, if the condition falls at the start. For example,
for (x = 9; x < 9; x = x-1)
printf("sd", x);
will never be executed because the test condition fails at the very beginning itself,
Let us again consider the problem of sum of squares of integers discussed in Section €.1, This
problem can be coded using the for statement as follows: i

sum 0;
for (n = 1; n <= 10; n = n+l1)
{
sum = sum+ n*n;
}
printf("sum = %d\n", sum);

The body of the loop
sum = sum + n*n;

is executed 10 timesforn=1, 2, , 10 each time incrementing the sum by the square of the value of n.

One of the important points about the for loop is that all the three actions, namely initialization, testing,
and incrementing, are placed in the for statement itself, thus making them visible to the programmers
and users, in one place. The for statement and its equivalent of while and do statements are shown in

Table 6.1.

Table 6.1 Comparison of the Three Loops

i for while do
: for (n=1; n<=10; ++n) n=1; n=1;
{ : while (n<=10) do
{ {
{5 ‘ —
’ n=n+1; n = n+1;
} }
while(n<=10);

.
v

iy Rk @R oty g £ § S

Py A

¥ ¢ 6.6

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more

than one variable can be initialized at a time in the for statement. The statements
p=1
for (n=0; n<17; ++n)
can be rewritten as
for (p=1, n=0; n<l7; ++n)
Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.
Like the initialization section, the increment section may also have more than one part. For exampie,

the loop
' for (n=1, m=50; n<=m; n=n+l, m=m-1)
{
p = m/n;
printf("%d %d %d\n”, n, m, p);
}

is perfectly valid. The multiple arguments in the increment section are separated by commas.

The third feature is that the test-condition may have any compound relation and the testing need not
be limited only to the loop control variable. Consider the example below:
sum = 03
for (i = 1; i < 20 && sum < 100; ++i)
{

sum = sum+i;
printf("%d %d\n", i, sum);
L . }

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The
loop is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated
inside the loop.

It is also permissible to use expressions in the assignment statements of initialization and increment
sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is vberfectly valid.

Frogramming in ANSI C

" an be omittod, if neceg,
e aspoct of for loop la that one or more soctions can t LA

N =19
Another uni 'ﬂg%

the following statements

1 L ¥
for (tm f= 100 ;5)

{) .
printf{"sd\n", m) :

m o= g

Both the initialization and increment sections are omitted in the for sta'?erzei:;;iggif:mtlla“za“o” ha,
been done before the for statement and the control variable is inqremsn i o ot ©p. In Sty
cases, the sections are left ‘blank’. However, the semicolons sepat ating 1 ehsf iy ‘LS ;emam. It
test-condition js not present, the for statement sets up an ‘infinite' loop. Such loop N be broker, Using
break or goto statements in the loop. .

We can set up time delay loops using the null statement as follows:

for (3 =1000; j > o0; j = 3-1)

.
L]

This loop is executeq 1000 times without producing any output; it simply Ca“_?_’;_s . t'melde'aY- Notice
that the body of the loop contains only a semicolon, known as a null statement. This can a S0 be Written
as

for (j=1000; j > o, J = j-1) ; ,
This implies that the ¢ compiler will not give an error message if we place a semicolon by mistake ot
the end of a for Statement. The semicolon will be considered as a null statement and the program may
produce some nonsense.

Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example,
two loops can be nested as follows:

for (i = 1; i < 10; ++4)

{
for J = 1; 4 != 5; ++j)
{ (Inner Quter
_________ loop loop
}

fiu0 1600001 IARFI114f il L2ttty

e peabing immay 01‘?“”““” -.llj! W sy shaasijiosd Jesyl, 1518 13408 St o] by §ittrdptotsf Wyt ine] asy Wt s
aivabiles (e vendaad W sanily dhstesr i Whlah ishlaimaints i oot i s 197 G sié Y365
¢ allwa it VB bl G nethling Hossm, s coampions s)

R T P IO E O S Ot e
sl sttt 100 shastesnesnta aw 1allowe

i (vow = 1y vaw WOMIARA § irnmg
{
i Yo Coabim » | o bibi o LGLMES RS Ry
{
Yoo foonbaing g
: (LR ETR S N (T S I
!
(LU IR N TS I
} '

The ouler loop controls the rows while the inner loop controls the colamns,

Aclass of n students take an annusl sxzsmingtion In m sutieAas, fo progese i
read the marks obtalnad by aach student in various subljects and 10 AnAns
and print the total marks obtained by each of them is given in Fig. ©.7,

| Programe.6.

Tha program unes two for loops, one for controlling the number of studems snd the other (or contrciling
the numbear ol aubjects, Sinca both the number of students and the number of subjeas are reguested
by the program, the progrim may bo used for i class of any size and any number of subjects,

The outar loop Includeas throo parts:

1, roeading of roll-numbers of studants, one after another;
2. Innar loop, whare the marks nro rond and totallod for each student; and
3 3. printing of total marks and doclaration of grades,

Program

#detine FIRST 360

#define SELCOND 240

main()

{
fint 0, M Vs s

roll number, marks, total;

printf("Enter number of students and subjectsin®);
scanf (“%d %d", &n, &m);
printf("\n");
for (i = 13 1 <= pn ; ++i)

{

o 1
g5, ¢

T e

Mrgaboppsasmpiagy o AN O

T
v

Pl 6.8 Faye

Selecting a Loop
Gaven a prabkam, the progiamimet s fiist concern is to decide the type of 100p stiucture to be
T ohause ane of the three op aupported by G, we may use the tollowing atrateqy:

Used

e Anadwe the problom and see whether it tequited a pre-teat or post-test loop.
o TR retres a postteat op, then we oan use only one loop, do while.
IR requires a prestest 1oop, then we have two cholces: for and while.

-
* Decide whather the loop tenination requites counter-based control or sentinel-based control
e Use for Kop if the counter-based control is neceasary, .
* Use while loop if the sentinel-based control is required,
* Note that both the counter-controlled and gentinel-controlled loops can be implemented by all
the three control structures,
6.5 JUMPS IN LOOPS —
- - - - - .- - . -~ e — e ———— i — (-\\L

A b im0 v s

Loops perform a set of operations repeatedly until the control variable fails to satisfy the tast-condition

The number of times a loop is repeated is decided in advance and the test condition is written to achieve

this. Sometimes, when executing a loop it becomes desirable to skip a part of the loop or to leave the
articular

loop as soon as a certain condition occurs, For example, consider the case of searching for a p
name in a list containing, say, 100 names. A program loop written for reading and testing the names 100

times must be terminated as soon as the desired name is found, C permits a jump from one statement
to another within a loop as well as a jump out of a loop.

Jumping Out of a Loop

An early exiti from a loop can be accomplished by using the break statement or the goto statement. We
have already seen the use of the break in the switch statement and the goto in the if...else construct.
These statements can also be used within while, do, or for loops. They are illustrated in Fig. 6.9 and
Fig. 6.10.

When a break statoment is encountared inside a loop, the loop is immediately exited and the program
continuas with the statement immediately following the loop. When the loops are nested, the break
would only exit from the loop containing it. That is, the break will exit only a single loop.

Since a goto statament can tra
pranching within a loop, Another iy

ocoeurs. A simple break statement would not work here.

While (rovr o)
{

if(condition)
break;

Baalsion Making and Laoping

169

wter the c-.nqlml o any place in a program, it 16 usetul 1o juoyide
artant use of goto is to exit lrony deaply nastad 1oops when an sifo

o

{

if(condition)

i f’:on’\
lo0
o loop fwhile ()
(a) (h)
for () for ()
* (
~ for ()
if(error) {
| S b »
Exit | artaks {f (condition)
from i Exit brﬂak;
100p | } from)
T inner
loop b
}
() (d)
Fig. 6.9 Exiting a loop with break statemeont
while (-) for ()
{ { :
if(error) p
goto stop; ior ()
if(condition) | Exit
— goto abc; from if(error)
Jump loop [goto error;
within 5*“ ! }
loop : rom %
b abc: two l ;
o loops|
} L= error;
Stop: e ————
(a) (b)

.Fig. 6.10 Jumping within and exiting from the loops with goto statement

Daovision Making and Loopinigy
Taoh valio, w . v
|L?\ii\ {\“;:;‘(:\i \i:\h::::'"ﬂ‘::ll\:"“Il‘l ‘ﬂ'l"‘!\lml_:n ﬂ|nn whethar tis a positive number or not, If i i positive, the
valie @« Rk v othatwlae, the loop tanminaton On oxll, the average
: » . C rago of the uot rond It
cateutated and the results ara printed out, ' ¢ 1 00 readly

| Programéo

E A program to avaluate tho sorlos,

&“:,.;(, m oy g X b x‘.? XY o v kXD
for -1 < x <1 with 0,01 par cont nceuracy Is glvon in Flg, 6,12, Tho goto
statoment Is usod to oxit tho loop on achloving the dosirad accuracy.

Wae have used the for statoment to parform tho ropoeatad addition of each of the torms in the sorlos,

Since it is an infinite series, the ovaluation of tho function Is torminatod when tho term x" roaches tho

desired accuracy. The value of n that do

cides the numbor of loop opoerations Is not known and therofore
we have decided arbitrarily a value of 100, which may or may not result in tho desired level of accuracy.

Program

detine LOOP 100

fdetine ACCURACY 0.0001

maing)

{
int nj
tioat x, term, sum;
printf("Input value of x : "),
scanf("%f", &x):
St 0

or (te: . 1 I LOOP & 4++n)
S\ += tory :
1o i & 4 i ACCURACY)
goto cutput; £ FROM THE LOOP *
te X3

i
printf{"“\nFINAL E.OF N 15 NOT SUFFICIENTANY);
printf(“T0 ACHIEVE DESIRED ACCURACYAn");
gote end;
sutputls -
printf("\nEXIT FROM LOOPAn"); o -
printf(*Sum = %f; No.of terms’= ZA\n®, sum, nj;
end: 7
: /% Null Statement *
.

4
!

"o "

"~

AN /T I e T S

§

Frogranuming in ANSI ©

Qutput
Input value of x : (21
EXIT FROM LOOP
Sum =« 1.265800; No.of terms = 7
Tnput value of x + 7§
EXIT FROM LOOP
Sum « 3.999774; No.of terms = 34
Input value of x : .99
FINAL VALUE OF N IS NOT SUFFICIENT
TQO ACHIEVE DESIRED ACCURACY

Fig. 6.12 Use of goto to exit from a loop

The test of accu i i ;
racy iIs made using an if statement and the goto statement exits the loop as S00N g

the accuracy condition is satisfied. If th
. . € number of loop repetitions is not large enough to prody
desired accuracy, the program prints an appropriate meF;saSe S

Note that the break statement is not very convenient to use here. Both the normal exit and the bre,y

exit will transfer the control to the sa .
~ me statement o the loop. But, in the
problem, the normal exit prints the message hat appears next " e

“FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY"

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This jg
necessary because a program should not end with a label.

Structured Programming

Structured programming is an approach to the design and development of programs. It is a discipline
of making a program'’s logic easy to understand by using only the basic three control structures:

e Sequence (straight line) structure

e Selection (branching) structure

« Repetition (looping) structure

While sequence and loop structures are sufficient to meet all the requirements of programming,
the selection structure proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs that are
easier to write, read, debug and maintain compared to those that are unstructured.

Structured programming discourages the implementation of unconditional branching using
jump statements such as goto, break and continue. In its purest form, structured programming is
synonymous with “goto less programming”.

Do not go to goto statement!

fiaeiston Makiig aodl Licping

Skipping a Part of a Loop

l.)un'nu the loop oparations, it may he necesnary o skip a pant of the Liody of 1he 1o anider el
conditions, For example, n processing of applicalions for some jols, we ight ke 1o osckute s
l3i\3§7ﬁ’5’*"‘tl ot data of applicants bolonging (o a colain categary. Cn reading W Gilagory cinde of an
applicant, a tost is made to soo whether his application should o cansideted o aot i it is ot i
be considerad, the part of the program loop that processes the application detalls is skipped and the
axecution continues with the noext loop operation,

Like the break statomont, ¢ supports another similar statement called the continue statsment |
Howaver, unlike the break which causes the loop 1o be terminated, the continue, as the name imglios, |
causos the loop to be continued with the next iterstion after skipping any statemeants in batyean. The
continue statement tells tho compllor, "SKIP THE FOLLOWING STATEMENTES ANG CORETINUE 20T
THE NEXTITERATION". The format of the continue statement is simply

continue;

The use of the continue statomaont In loops s illustrated In Fig. 6.13, In while and do loops, continue
causes the control to go direclly to the test-condition and then to continue the laration process, In the
case of for loop, the incremont soction of the loop I8 oxecutad bofore tha test-condition is evaluatead

e While (test-condition) do
{ {
| if (__________) l | ()
=it continue; continue;

W a8 e

e

~ | while (test-condition);

}
(a) (b)
—» for (initialization; test condition; increment)
{
P (jwesuennaos)
e St continue;
} .
: (c)

Fig. 6.13 Bypassing and continuing I loops

5 I Program 6.10 I The program in Fig. 6.14 illustrates the use of continue statement,

_ The program evaluates the square root of a series of numbers and prints the results. The process slops
when the number 9999 is typed in.

— -

i
i
£
H
¢
H
i
!
i
i

e

e SR
e,

by, J
— ¥
s

Alist of items can be given one variable name using only one subscript 204 such z yan.

% e, -
a single-subscriptod variable or a one-dimensional array, In mathematics, ve dfien cez ,,3,&«,‘.’7’;’,-3?,,:
that are single-subscripted. For instance, we use the equation. Py
1]
A= Zzi
i=1
n
to calculate the average of n values of x. The subscripted variable x refers to the ith eleme. s Of z ¢
single-subscripted variable x, can be expressed as e
x[1], x[2], x[2],...0.-- x[n]
The subscript can begin with number 0. That is
x[0]
is allowed. For example, if we want to represent a set of five numbers, say (35, 40, 20, 57 19, by =
array variable number, then we may declare the variable number as follows =5
int number[5];
and the computer reserves five storage locations as shown below:
number [0]
number [1]
number [2]
number [3] 4
number [4] i
The values to the array elements can be assigned as follows:
number [0] = 35;
number[1] = 40;
T number([2] = 20;
number[3] = 57;
number[4] = 19;
This would cause the array number to store the values as shown below:
‘ number [0] 35
number [1] 40
number [2] 20
number [3] 57
number [4] 19

These elements may be used in programs just like any other C variable. For example, the following
are valid statements:
a = number[0] + 10;
number[4] = number[0] + number [2];:

=73 b

o Lwa v i ey

Arrays

number[2] = x[6] + y[10];
value[6] = number[1] * 3;
The subscripts of an array can be integer constants, integer variables like i, or expressions that yield

integers. C performs no bounds checking and, therefore, care should be exercised to ensure that tho
array indices are within the declared limits.

7.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS e 4

Like any other variable, arrays must be declared before they are used so that the compiler can allocate
space for them in memory. The general form of array declaration is

type variable-name[size];

The type specifies the type of element that will be contained in the array, such as int, float, or
char and the size indicates the maximum number of elements that can be stored inside the array. For

example,
float height[50];
declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. Similarly,
int group[10];
declares the group as an array to contain a maximum of 10 integer constants. Remember:
e Any reference to the arrays outside the declared limits would not necessarily cause an error.
Rather, it might result in unpredictable program results.
» The size should be either a numeric constant or a symbolic constant.
The C language treats character strings simply as arrays of characters. The size in a character string
represents the maximum number of characters that the string can hold. For instance,
char name[10];
declares the name as a character array (string) variable that can hold a maximum of 10 characters.
Suppose we read the following string constant into the string variable name.
“WELL DONE"

Each character of the string is treated as an element of the array name and is stored in the memory as
follows:

ke,

Frogramming in ANS! C

When the compiler sees a character string, it terminates it with an additional null charactor, Thug, y,
element name[10] holds the null character \0'. When declaring character arrays, we must afloy, ong
extra element space for the null terminator.

R e i -subscriptod variable to evaluato \
l . Program 7.1 l \'\tnte a program using a single-subscrip \ the following
: expressions:

10
Total = inz

=1
The values of x1,x2,....are read from the terminal.

Program in Fig. 7.1 uses a one-dimensional array x to read the values and compute the sum of thejr

i squares.

Program

A main()

int i ; :
float x[10], value, total ;)
ﬁ‘ﬁ; /* -+READING .VALUES INTO ARRAY-.: <10 o i 1.2/

printf("ENTER 10 REAL NUMBERS\n") ;
,‘ for(i =0 ; i <10 ; i++)
$ {
§ _ scanf("%f", &value) ;

g .o ; x[i] = value ;

T it w. et im . SEOMPUTATION OF TOTAL . . « « = . *f

total = 0.0 ;
for(i.=0 ; i <10 ;-i++)
total total + x[i] * x[i] ;

/*« . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

O printf("\n");

Cfor(A= 0551 < 105 4+)
i - printf ("x[%2d] =

J%5.2F\n", i+l, x[1]) ;

~ printf(*\ntotal = %.2f\n", total) ;

it

Afriyh

dutput : .
ENTER 10 REAL NUMIEI,

W22 33 A4 5,666 7.70,829.,910,10

x{ 1] » 1.10
x| 2] = 2.20
x| 3] = 3,30,
x|, 1] » 4,10
x| 6] = b6.50
x| 0] = 6,060
X[7). = 7.70
x| 8] = 8.80
x| ():l « 09,90
x[10] = 10,10

¢ Total = 446,806

Fig. 7.1 Program to illustrate one-dimensional array

I Note C99 pemits arrays whose size can be specified at run time, See Appendix “C99 Features’”, l

-

7.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS ,;Z

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”. An
array can be initialized at either of the following stages:

e At compile time

* Atruntime

Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they are
declared. The general form of initialization of arrays is:

type array-name[size] = { list of values };
The values in the list are separated by commas. For example, the statement
int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element. If the
number of values in the list is less than the number of elements, then only that many elements will be
initialized. The remaining elements will be set to zero automatically. For instance,

S,

Programming in ANS! C

float total[5] = {0.0,15.75,-10};

will initialize the first three elements to 0.0, 15.75, and —10.0 and the remaining two elements Zery
The size may be omitted. In such cases, the compiler allocates enough space for a| initiaﬁZed

elements. For example, the statement
int counter[] = {1,1,1,1};

will declare the counter array to contain four elements with initial values 1. This approach workg fing s
long as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {'J','0', 'h', 'n', '\0'};
declares the name to be an array of five characters, initialized with the string
character. Alternatively, we can assign the string literal directly as under:
char name [J = "John";
(Character arrays and strings are discussed in detail in Chapter 8.)

Compile time initialization may be partial. That is, the nhumber of initializers may be less than the
declared size. In such cases, the remaining elements are inilialized to zero, if the array type is NuMmeric
and NULL if the type is char. For example,

int number [5] = {10, 20};
will initialize the first two elements to 10 and 20 respectively, and the remaining elements to 0. Similarly,
the declaration.

“John” ending with the nyy

char city [5] = {'B'};
will initialize the first element to ‘B’ and the remaining four to NULL. It i
the size explicitly, as it allows the compiler to do some error checking.
Remember, however, if we have more initializers than the declared size, the compiler will produce an
error. That is, the statement

s a good idea, however, to declare

int number [3] = {10, 20, 30, 40} ;
will not work. It is illegal in C.

Run Time Initialization
An array can be explicitly initialized at run time. This approach is usually applied for initializing large
arrays. For example, consider the following segment of a C program.

for (i = 0; i < 100; i = i+1)
if i <50
sum[i]

0.0;- /* assignment statement */

else”

v
B
3

- [|

-y

R -
I

1.0;

e Pt st s i < 1Y

Artays

Sorting i the process of armanging elemants in tha list according to thelr values, i ascariding o
desconding order, A sorted list is called an ordared i3l Sodsd lsts are aspocially impontant in list
gearching Because thay facililale rapid seatch oparations. Many sorling techriques are availabls.
The three simple and most important among thom are:

+» Bubble sort

e Selection sonl

« ingertion soit

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching Is the process of finding the location of the specified element in a list. The specified

element is often called the search key. If the process of searching finds a match of the search key
with a list element value, the search said to be successful; otherwise, it is unsuccessful. The two most

commonly used search techniques are:

« Sequential search

« Binary search

A detailed discussion on these techniques is beyond the scope of this text. Consult any good book
on data structures and algorithms.

anpsen

i

7.5 TWO-DIMENSIONAL ARRAYS P

e

So far we have discussed the array variables that can store a list of values. There could be situations
where a table of values will have to be stored. Consider the following data table, which shows the value

of sales of three items by four sales girls:

item1 ‘ Item2 ltem3
Salesgirl #1 310 _ 275 365
Salesgil#2 2y ‘ 210 190 325
Salesgii#3 . - - ! : 405 235 240
Salesgin #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix
consisting of four rows and three columns. Each row represents the values of sales by a particular
salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as v, Here
v denotes the entire matrix and \L refers to the value in the i row and j* column. For example in the

above table v,, refers to the value 325.
- C allows us to define such tables of items by using two-dimensional arrays. The table discussed
abo've can be deﬁned in C as
v[4][3]
: Two-drmensronal arrays are declared as follows: i
: : type array name [row__ size][column size]

; Note that unlrke most other languages, which use one pair of parentheses with commas to separate
array sizes, C places each size i |n its own set of brackets. {18 ;

Arrays
~ progra™ #define ROWS. . 5
gdefine COLUMNS &
main()
{
int row, column, product [ROWS] [COLUMNS]
fntd,2 3 » ‘
printf(" MULTIPLICATION TABLE\n\n") ;
printf(" ™). .
for(3= 1 5.3 <= COLUMNS ; j++)
printf("sad" , j) ;
printf("\n") ;
printf(" \n")s
for(i =0 ;5 1 < ROWS 5 i++)
{ . .
row =i 4+ 1 ;
printf("%2d |", row) ;
for(j = 1 ; j <= COLUMNS ; j++)
{
column = j ;
product[i][j] = row * column ;
printf("%4d", product[i]1[3i])
}
printf("\n") ;
}
}
Qutput:
MULTIPLICATION TABLE .
1 2 3 4; 216
1 1 2 4 5
2 2 4 8 10
3 3 6 _ 12 15
Bl paBio w12 r 1B 20
Baili 855 2110 5115 8 120,52 25

Fig. 7.6 Program to print muitiplication table using two-dimensional array

7.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

L
Like the one-damensmnal arrays, two-dlmensmnal arrays may be lmtlahzed by following their declaration
- with a list of |n|t|a| values enclosed in braces. For example,

~int table[2][3] = { 0,0,0,1,1, 1};

N

UL Programming in ANSE C

nitalizes the elements of the first row to zero and the second row to one. The initialization is ong
Oy row. The above statement can be equivalently written as
int tadble[2)[3] = ({(0.0,0}, {1.,1.1}};
Ry sumounding the elements of the each row by braces.
\We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3) = {

Mo

{0,0,0},
{1 » 1 ’ 1}
}s
Note the syntax of the above statements. Commas are required after each brace that clogeg off
TOW, except in the case of the last row. '
~ When the array is completely initialized with all values, explicitly, we need not specify the SIZe of the
first dimension. That is, the statement
int table [] [3] = {
{ 0, 0) 0}'
{2, 1 1}
‘ ‘ L
S permitted.
tfthe values are missing in an initializer, they are automatically set to zero. For instance, the statemen
int table[2][3] = { ‘

= {1,1},
. {2}
19 b
* ‘ny will initialize the first two elements of the first row to one, the first element of the second row to two, and
DAY all other elements to zero.
| R When all the elements are to be initialized to zero, the following short-cut method may be used.
e int m[31[5] = { {0}, {0}, {0}};

The first element of each row is explicitly initialized to zero while other elements are automatically
; initialized to zero. The following statement will also achieve the same resuit:
e int m [3] [5] = { 0, 0);
|
;

A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and
I Program 7.6 I Maruti) was conducted in four cities (Bombay, Calcutta, Delhi and Madras).
, Each person surveyed was asked to give his city and the type of car he was

using. The results, in coded form, are tabulated as follows:

M 1 ¢ 2 B 1 D 3 M 2 B 4
¢cC 1+ b 3 M 4 B 2 D 1 C 3
D 4 D 4 M 1 M 1 B 3 B 3
el bl el Lot v R BRI Vil WSl L S o
b 1+ ¢ 2 B 3 M 1 B 1 ¢ 2
D FIQ i (B g S acR SR it Megianeg i ey

.Codes represent the following information:

Gutpat

L

@

Fig. 7.9 Program to find transpose of a matrix

6 G MULTI-DIMENSIONAL ARRAYS C‘éz

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The general

“form of a multi-dimensional array is
type array_name[s1] [s2][s3].... [sm]

where s, is the size of the lth dlmenswn Some example are:
int survey[3][5][12];
s : float table[5][4]1[5]1([3];
'survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a
' four-dimens:onal array containing 300 elements of floating-point type.
The array survey may represent a survey data of rainfall during the last three years from January to

~ December in five cities.
If the first index denotes year, the second city and the third month, then the element survey[2][3][10]

' denotes the rainfall in the month of October during the second year in city-3.

Lhataila Alrayn wnil Girinigs
R tE

.1“‘]”1"’!”‘; |J.")!i".?. "”;i { /
Ao l.,“, { ,”,,

H (-"'”i’ YL ¥ 2 ARFIRY AVLS
ANt I{"strings are

Blnlsn”
CAEY h

LU ¥
printfi®st Hhiys nire nnt el in”j

4
/
-

8.8 STRING-HANDLING FUNCTIONS

Fortunately, the Clibrary supports n Inrge numt)
A or of - ‘
out many of tha string manipulations disc 11, FOloWing ro the most ety wecd -

handling functions. ussod 8o ar, Following are the most commonty sserd string:

T

s

Function /.w!/an e oo ——
streot() concatonstes twrfatringg 2
Siempl) compares two sifngs %
airopy 0 coples one string over another
pestrienO sy - o TG E 2 finds the length of a'string |

Woe shall discuss briefly how each of these functions can be used in the processing of strings.

strcat() Function
The strcat function joins two strings together. It takes the following form:
strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat iz executed, string2 iz appended (o
string1. It does so by removing the null character at the end of string1 and placing string2 from there.
The string at string2 remains unchanged. For example, consider the following three strings:

0 1 2 3 4 5 6 7 & g (5] i)
v ElR y \0 | |]
o 1 2 3 4 5 6

pan2=lAGlO] ol‘ol\ol I I

o 1 2 3 4 5 8
Part3= | B A.-D»\Ol l

o

Execution of the statement

I Programming in ANSI G

will result iny

strcat (partl, part2);

Q 1 2 J 4

. o 4] (3A /__ (3] U U1 ?
s (vl [w]v] Tolselolul I] }

0 1 2 3 4 5

- (el ofe o]]")

while the statement

will result in:

0 1 2 3

3 8 9 0 1 2

Al i3 -6 e RN B T B B B

7 s
LU O 1 2 3 4 5 6
Ji '
A
i We must make sure that the size i '
b of string1 (to which string2 is appended) is large
g accommodate the final string. . = i) B o
?;\ strcat function may also append a string constant to a string variable. The following is valid: ;
NS strcat(part1,"Goop");
;. "J’m C permits nesting of strcat functions. For example, the statement
_ \\ strcat(strcat(stringl,stri ng2), string3):

is allowed and concatenates all the three strings together. The resultant string is stored in string1.

stremp() Function

The strecmp function compares .two strings identified by the arguments and has a value O if they are
equal. If they are not, it has the numeric difference between the first nonmatching characters in the
strings. It takes the form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:
R strcmp(namel, name2);
strcmp(namel, "John");
; ; strcmp ("Rom", "Ram");
Our h'lajor concern is to determine whether the strings are equal; if not, which is alphabetically above.
“The value of the mismatch Is rarely important. For example, the statement
; g ' strcmp(“their"”, “there");
‘will return a value of —9 which is the numeric difference between ASCII “i" and ASCII “r". That is, “i” minus
“r" in ASCII code is —9. If the value is negative, string1 is alphabetically above string2.

y .

Chaiaeiar A ivva niif il s

sirepy) Function

e BTN RAIOTENLAVORS Aot e @ s i NTANIE
stenv g wiing ey

Lot ansianE e conteinin of B '
ad ansa *OE B2 W whing .. ok L
contant EOD @i, the statemient W wt ay h g RICTETH TRV

Al e T

bl 5af 6 wirljng

3 st - AT LR BRI
wizh asRan IO S TDELM o the ating vadabie Sl By, e sttisan
il the contents of b steepyedtye, elivi)
will assiit e auitents af the ating vadable aitys by Gl
SO B R 2N 1 icaive the i*nmnum‘u; :_n:'\:f,;.““"m VAR 01 The a2 of e ansy 61y)

strlen() Function

Thig Runckion counts and returim the number of oharaaters I o B tng, 1 takes ha fonm
N = utrlan(atiing)

Whetre nﬁis an it‘\lﬁgér \‘_:\ﬂ;\l!lﬂ\ which eaelves the value of the lanplh of the ateding, Thea argment
may be a stng constant. The counting ends at the firat il charnoter,

l' 4 Progmm&9 I i‘:?. 82, and 83 are thies stiing varlablon, Wille a program o raacd two sling
; . Sl conatanta into 81 and a2 and compare whather thay aie aqual or not 1 hey
are not, join them together, Then copy the contants of 81 1o the varlabla 83,
At the end, the program ahould print the contants of all the three varables

and thelr lenptha,

The program ts shown in Fig. 8,10, During the firat ran, the Input strings are "New" and "York", Thesa

strings are compared by the statement
X = stremp(sl, s2);

Since they are not equal, they are joined together and coplad Into 83 uting the statament
strepy(s3, s1);
" The program outputs all the three strings with thelr lengths,
_ During the second run, the two strings 81 and 82 aro oqual, and thorefore, thay ara not joined together,
In this case all the three strings contain the samo string constant “London®,

- Program - »
S #include <string.h=

- main()
. { - char s1[20], s2[20], $3[20]:

int x,. 1%, 12, 13
Cprintf(“\n\nfnter two string constants \n*)3

i coprintf(U1Y):

